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• Embed specialized hardware into Solid State Drives (SSDs) 
for cortical processing assist 

• Architecture modeling shows ~100x lower J/op compared to 
processing on host 

• Identical to standard SSD - same manufacturing process and 
cost 

• Re-purposed as cortical processor through firmware 
• Open standards, e.g. same APIs as GPGPU, OpenCL, PyNN

Summary
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has successfully transitioned to 3D 
NAND Flash

An ingenious breakthrough which enables multiple layers of 
memory without needing to pattern each layer 
Decoupling NAND Flash production CAPEX from lithography 
(45% for planar down to 15% for 3D)*

*Samsung Analyst Day 2013 Memory Business 

Jim Handy, 2013
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devices shipping in volume
3D NAND Process

Silicon Substrate

“The burden will shift from lithography to deposition and etch” 
- Ritu Shrivastava, Sandisk
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for DRAM and FLASH Memory

ITRS – Technology Trends
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Relax planar scaling, push into 3rd dimension, continue Moore’s law
NAND Flash Scaling - ITRS

 - ITRS Winter Public Conference Dec 2012 Hsinchu, Taiwan 
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200x 64b FPUs

1000x 16b MACs

Signal P
rocessing Gates (K

)

Gates Per 0.25mm
2  (K)

Near Shannon limit, Iterative Low-Density Parity-Check channels >1M gates

Sustaining NAND density growth

Li, Peng, Kevin Gomez, and David J. Lilja. "Exploiting Free Silicon for Energy-Efficient Computing Directly in NAND Flash-based Solid-State 
Storage Systems.“ IEEE HPEC 2013
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Cost of adding specialized cortical hardware automation is marginal

Planar 3D NAND
Design Space Parameter 
$/GB <-> $/op<-> J/op
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4 to16 Flash Die per Package
Scaling up a Cortical processor

€ 

f (x)
32GB/die +~40%/yr 
Write @50MB/s 
Read @500MB/s  
+20%/yr 
Write 20nJ/B 
Read 2nJ/B

Write @500MB/s 
Read @800MB/s 
+10%/yr

Single NAND Flash package ~ 5TB/in3 +40%/yr

Example eMMC device (Micron)

Stacked Die with controller 
US 20100314740 A1

Currently ~2M gates for LDPC and packet switching 
Substrate for specialized or reconfigurable cortical 
hardware
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10’s of Flash Packages in each SSD
Scaling up a Cortical processor

€ 

f (x)

€ 

f (x)

€ 

f (x)

€ 

f (x)

€ 

f (x)

€ 

f (x)

)(xg

10’s

2GB/s Read +80%/yr 
1GB/s Write +20%/yr

Single SSD 
TB’s of NV memory 

Seagate 600 Pro SSD

Multi-core processor including  
specialized or reconfigurable 
cortical hardware acceleration
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Array of SSDs in 1U Rack in Cloud Compute Server
Scaling up a Cortical processor
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SSD

Flash 
Package

10’s

5-12 GB/s 
Ethernet 
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• Flash Memory cost and SNR driven by mobile computing market 
– Increased investment in signal processing silicon at NAND interface – low marginal cost for 

added compute 
• Power Wall – end of Dennard scaling (power ∝ 1/L instead of 1/L3) 

– Since 2005 has driven multi-core parallelism to maintain compute cost-performance trajectory 
– In turn has forced parallel programming into the mainstream 

• Moore’s Law post Power Wall continues to provide gates at 1/L2 which can 
not all be switching simultaneously 
– Increased adoption of power islanded heterogeneous architectures operating at device power 

budget 
• Memory Wall – exponentially growing gap between processor and memory 

performance 
– Continues to drive tighter integration of memory and compute.  GPU processing is a temporary 

reprieve

Why Now
Convergence of Trends
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Lots of efficient H/W automation – powered off most of the time

Heterogeneous Architectures

As Moore continues to increase the number of transistors on silicon at a scale of 1/L2 

while  power is only decreasing as 1/L … !
… we can afford to ‘overprovision’ the chip – i.e. use the TDP (total die power budget) 
using just a subset of the chip’s resources – for example use the entire budget on 
compute while shutting down global on-chip communication resources. !
Enables peak performance (using all available power) on diverse workloads. !
This may signal that the right time for Reconfigurable Computing has arrived – specialized 
hardware acceleration, powered off most of the time. !



!13

• NAND is a block device and requires a significant and growing investment in 

signal processing to enable it’s continued scaling 

• This signal processing overhead is best situated close to NAND to minimize the 

energy cost of data movement 

• NAND has no delusions of being a DRAM replacement like PCM or STTRAM 

with low-latency and close to byte addressable architectures which will not 

tolerate any significant signal processing overhead 

• It is not about the technology – it’s the economics - SSDs exist due to the 

demand for consumer grade NAND devices for the smartphone, tablet, SD Card 

and USB memory markets.  

• Cortical Inspired Compute Elements embedded in SSDs likewise will succeed or 

fail purely on economics ($/op, J/op) not technology

Why NAND Flash and not other NVM technologies



!14

Architecture Modeling 

Facial recognition task which is a proxy algorithm 
for content based image retrieval: 
Compute on 16 channel SSD is ~ 0.2mJ/face 
150X lower J/face than computing on Host 
!
!
!
!
!
Boltzmann machine task- a proxy for many 
machine learning and data intensive scientific 
compute algorithms:  
Compute on SSD is ~40X lower J/Op compared 
to Quad-Core host

SCE stores and computes on eigenfaces

B
rian H

arding, C
ornell

“Building High-level Features Using 
Large Scale Unsupervised Learning”, 
Quok Le et al,  2012 
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Big Data Analytics is no longer a Niche
The need for Energy Efficiency

“Taming Biological Data with D4M”, Kepner 2013 

Advances in DNA sequencing are rapidly decreasing the cost of whole human 
genome sequencing 
As a result, the number of humans being sequenced is increasing significantly 
Data needing to be processed is rapidly outpacing computing performance-cost. !
Together these drive the need for greater efficiency. 
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Thank You 
!

kevin.gomez@seagate.com
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Architecture Block Diagrams

Baseline – SSD for Data, Compute in Host “Active Flash” – Compute in SSD Controller Processor

Added Compute functionality may be power 
islanded and enabled through firmware to 
make an SCE indistinguishable from a 
standard SSD - sharing the same production 
flow and economy of scale

Compute within Flash Package
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Architecture Simulation Parameters

CPU Power: use ITRS HP technology to evaluate dynamic and leakage power.  
Number of Gates: 200M/core  
Frequency: 2GHz.  
Dynamic Power (per core): 5.04W  
Leakage Power (per core): 0.340W  

SSD Controller Power: use ITRS LOP technology to evaluate dynamic and leakage power.  
Number of Gates: 20 millions per core (Assumption: 10% of the CPU).  
Frequency: 1GHz.  
Dynamic Power (per core): 0.156W.  
Leakage Power (per core): 1.34mW. !
Channel Processor Power: use ITRS LOP technology to evaluate dynamic and leakage power.  
Number of Gates: 1K, 10K, 100K, 1M.  
Frequency: 400MHz.  
Dynamic Power (per core): 3.12uW, 31.2uW, 312uW, 3.12mW. 
Leakage Power (per core): 67nW, 670nW , 6.7uW, 67uW. !
DDR SDRAM: use parameters from MICRON. 
Dynamic Power (per 2GB): 438.3mW. 
Leakage Power (per 2GB): 88.1mW.  !
NAND Flash: use parameters from MICRON. 
Dynamic Power (per die): 0.04W. 
Leakage Power (per die): 0.003W.  !
Host Interface: PCIe. 
Dynamic Power (per GB): 37.5mW. 
Leakage Power (per GB): 0.mW
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Baseline Face Recognition

1-Core 2-Core 4-Core 8-Core 16-Core

Average Processing Time of Facial Recognition Algorithm (ms)

CPI = 100 52.7 26.4 13.3 6.80 3.50

CPI = 10 5.50 2.90 3.40 3.00 2.90

CPI = 1 3.00 2.80 2.80 2.70 2.70

CPI = 0.1 2.70 2.70 2.70 2.70 2.70

Average Power of Facial Recognition Algorithm (W)
CPI = 100 5.58 10.93 21.5 42.1 81.5

CPI = 10 5.73 10.86 9.97 12.32 15.64

CPI = 1 2.12 2.54 3.27 4.67 7.44

CPI = 0.1 1.39 1.74 2.43 3.81 6.56

Average Energy of Facial Recognition Algorithm (mJ)

CPI = 100 294 289 286 287 286
CPI = 10 31.5 31.5 33.9 36.9 45.4
CPI = 1 6.36 7.13 9.17 12.6 20.1

CPI = 0.1 3.76 4.71 6.57 10.3 17.7

Core = Host CPU Cores 
CPI = clock cycles per 
instruction of single core in 
CPU
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Active Flash Face Recognition

1-Core 2-Core 4-Core 8-Core 16-Core

Average Processing Time of Facial Recognition Algorithm (ms)

CPI = 100 52.6 26.4 13.3 6.70 3.40

CPI = 10 5.40 2.80 1.50 0.800 0.500

CPI = 1 0.700 0.400 0.300 0.300 0.300

Average Power of Facial Recognition Algorithm (W)

CPI = 100 0.699 0.858 1.17 1.79 2.98

CPI = 10 0.716 0.881 1.18 1.70 2.48

CPI = 1 0.839 1.02 1.15 1.16 1.17

Average Energy of Facial Recognition Algorithm (mJ)

CPI = 100 36.8 22.6 15.6 12.0 10.1

CPI = 10 3.86 2.47 1.78 1.36 1.24

CPI = 1 0.587 0.410 0.345 0.347 0.351

Core = SSD Controller Cores 
CPI = clock cycles per 
instruction of single core in 
SSD controller

Exploiting Free Silicon for Energy-Efficient Computing Directly in NAND Flash-based Solid-State 

Storage Systems, High Performance Extreme Computing 2013, Li et al 
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In-Flash-Package Face Recognition

Channels 4 8 16 32

Average Processing Time (ms)

Time 0.300 0.200 0.100 0.0500

Average Power of Facial Recognition Algorithm (W)

Gates = 1K 0.887 1.23 1.87 2.98

Gates = 10K 0.887 1.23 1.87 2.98

Gates = 100K 0.888 1.23 1.88 2.99

Gates = 1M 0.899 1.26 1.92 3.06

Average Energy of Facial Recognition Algorithm (mJ)

Gates = 1K 0.266 0.246 0.187 0.149

Gates = 10K 0.266 0.246 0.187 0.149

Gates = 100K 0.266 0.247 0.188 0.149

Gates = 1M 0.270 0.251 0.192 0.153
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